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Abstract

Shared-memory (SMP) parallelization strategies for density matrix renormalization group (DMRG) algorithms

enable the treatment of complex systems in solid state physics. We present two different approaches by which parall-

elization of the standard DMRG algorithm can be accomplished in an efficient way. The methods are illustrated with

DMRG calculations of the two-dimensional Hubbard model and the one-dimensional Holstein–Hubbard model on

contemporary SMP architectures. The parallelized code shows good scalability up to at least eight processors and

allows us to solve problems which exceed the capability of sequential DMRG calculations.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

During the past decade the density matrix renormalization group (DRMG) [1,2] has been established as

a powerful numerical technique for solving many-body problems in Interacting Electron Systems, Classical

Statistical Physics, and Quantum Chemistry (for a review, see [3]). For strongly correlated quantum lattice

systems, DMRG techniques complement and sometimes even replace traditional methods like exact di-

agonalization (ED) or (Quantum) Monte Carlo algorithms [4]. In particular, for quantum systems in one

spatial dimension and short-range interactions DMRG provides approximations to the ground state, to the

low-lying excited states and to spectral properties with high accuracy at a modest computational effort.
Although the computational requirements can easily exceed the resources of sequential computers such

as PCs or workstations and grow rapidly with increasing complexity (dimensionality or range of interac-

tions), no efficient parallelization approach has been introduced for DMRG algorithms to date. Starting

from a sequential C++ package developed by White and Jeckelmann we discuss two shared-memory
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parallelization strategies for the superblock diagonalization and analyze their scalability and performance

on state of the art SMP systems like IBM p690, SGI Origin and Intel Itanium2-based servers.

The first approach uses the inherent parallelism contained in the dominating operation of all DMRG
calculations, i.e. dense matrix–matrix multiplication (BLAS DGEMM). This is the lowest possible par-

allelization level and is thus prone to scale badly, especially in certain numerical limits where the matrices

tend to be small and the parallelization overhead becomes dominant. It is nevertheless a viable strategy

when the numerical structure of the problem at hand is appropriate. In those rare cases, a significant

percentage of theoretical peak performance can be achieved.

The second approach targets the parallelization of the sparse matrix–vector multiplication (MVM)

contained in the superblock diagonalization algorithm and overcomes the overhead-induced performance

bottlenecks of parallel DGEMM. Here we use OpenMP to achieve better scalability at the cost of an only
slightly more complicated code structure. DMRG calculations can then be carried out with sufficient

parallel efficiency on up to eight CPUs, depending on the physical problem. Modern supercomputer ar-

chitectures of the SMP cluster type with large-memory SMP nodes comprising up to eight or sixteen CPUs

are the primary target systems on which this approach can be used with success.

In the following section, we will very briefly discuss the basics of the DMRG algorithm and its imple-

mentation in the software package used as a starting point for parallelization. Section 3 deals with the two

different parallelization strategies and gives some estimates about expected performance. In Section 4 we

will present the results of performance measurements on different architectures. Section 5 then illustrates
the benefits of parallel DMRG, introducing some physical results not obtainable with ED methods. Finally,

Section 6 gives some conclusions and summarizes what has yet to be done.
2. DMRG algorithm

2.1. Basics

Determining the ground state and spectral properties of interacting quantum lattice models like e.g. the

Hubbard model

HHM ¼ �t
X
ijh i;r

cyircjr
�

þH:c:
�
þ U

X
i

ni"ni# ð1Þ

or the Holstein–Hubbard model

HHHM ¼ HHM þ gx0

X
i;r

ðbyi þ biÞnir þ x0

X
i

byi bi ð2Þ

is a fundamental but difficult problem in solid-state physics. Here, cyir (cir) denote fermionic creation

(annihilation) operators of spin-r (r 2 f"; #g) electrons, nir ¼ cyircir, and byi (bi) are the corresponding

bosonic phonon creation (destruction) operators (for the construction of the Hilbert space basis see, e.g.

[5]).

The Hubbard model, independently proposed in 1963 by Gutzwiller et al. [6], was originally designed to
describe the ferromagnetism of transition metals. The physics of the model is governed by the competition

between electron itinerancy (t; delocalization) and short–range Coulomb repulsion (U ; localization, magnetic

order), where the fermionic nature of the charge carriers is of great importance (Pauli exclusion principle, i.e.,

the existence of an �effective� long–range interaction). Besides the ratio U=t, the particle density n, the tem-

perature T , and the spatial dimensionD (geometry of the lattice) are crucial parameters involved in themodel.

Successively, the Hubbard model was studied in the context of magnetism, metal–insulator (Mott) transition,
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heavy fermions and high-temperature superconductivity as the probably most simple model to account for

strong correlation effects.

In addition to the purely electronic interactions in the Hubbard model it is often necessary to incorporate
the coupling to lattice degrees of freedom to describe the electronic properties of solids. In the Holstein–

Hubbard model [7], the second term couples the electronic system locally to an internal optical degree of

freedom of the effective lattice, whereas the third term takes into account the elastic energy of a harmonic

lattice. g and x0 denote the electron–phonon coupling constant and the phonon frequency, respectively. In

the single-electron case, the resulting Holstein model has been studied extensively as a paradigmatic model

for polaron formation. At half-filling the electron–phonon coupling may lead to a Peierls instability (in

competition to the antiferromagnetic instability triggered by U ).

Although a tremendous amount of work has been devoted to the solution of the Hubbard and Holstein–
Hubbard models [8,10, and references therein], exact results are very rare and only a few special cases and

limits have so far been understood analytically. Therefore a numerical treatment of both models seems to

be inevitable.

Due to the locality of interactions, the matrix representation of the Hamiltonian operator H in a real-

space basis is generally very sparse. In an ED approach this matrix is (partially) diagonalized with Lanczos,

Davidson or similar algorithms. The dominant operation is then a sparse MVM of H with some vector~v.
Due to the exponential growth of degrees of freedom with increasing system size, ED methods are limited

to relatively small systems and generally require vast computing resources and memory bandwidth.
The DMRG algorithm [1,2,10] tries to overcome those drawbacks by implementing a variational scheme

that truncates the Hilbert space used to represent H in an optimal way. It is the selection of the basis states

that lays the groundwork on which DMRG is built.

2.2. The algorithm

DMRG splits the physical system (usually in real space, although a momentum space approach is

possible [9]) into two pieces, the so-called system block and the environment block. Both together form the
superblock (see Fig. 1).

The central entity in the algorithm is the reduced density matrix

qii0 ¼
X
j

w�
ijwi0j; ð3Þ

where i and j label the states of the system and environment blocks, respectively, so that a superblock state

wj i can be composed:

wj i ¼
X
ij

wij ij i jj i: ð4Þ

Definition (3) shows that in q the states of the environment block are summed over. In this manner all

possible boundary conditions (BCs) that the environment may impose on the system are incorporated in the

density matrix. It can now be shown [10] that the eigenstates of q with the largest eigenvalues are those that
Fig. 1. Division of the complete physical system into ‘‘system block’’ and ‘‘environment block’’. Both blocks together form the

‘‘superblock’’ whose Hamiltonian matrix is diagonalized.
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have the most significant impact on observables, i.e. in order to get a good guess at an optimal basis set for

the superblock Hamiltonian one has to

• diagonalize the reduced density matrix for a system block of size l and extract the m eigenvectors with
largest eigenvalue,

• construct all relevant operators (system block and environment Hamiltonians, observables) for a system

block of size lþ 1 in the reduced density matrix eigenbasis,

• form a superblock Hamiltonian from the system and environment block (size l� 1) Hamiltonians plus

two single sites (see Fig. 2) and determine its ground state by diagonalization.

These steps must be repeated several times, shifting the interface between system block and environment

block back and forth until some convergence criterion is fulfilled. This might be e.g. stationarity of the

ground state energy or a sufficiently small discarded weight, which is the sum of all density matrix eigen-
values that were not considered when forming the basis. The procedure can be generalized to two di-

mensions, although it is not quite clear as to how the best ‘‘path’’ for the sweeps through the grid should be

chosen [10].

The accuracy of observables like the ground state energy depends on the number m of density matrix

states kept. The discarded weight gives some hint for choosing the right m for a particular problem. Usually

one starts with m rather small and increases m every time the ground state energy has converged. Never-

theless most of the computing time is spent in the sweeps with largest m. Sensible values for m depend on the

physical model under consideration. In the one-dimensional (1D) case where DMRG usually performs
best, m ¼ 500–1000 is often sufficient to get decent data, even for models with electron–phonon interaction

like the HHM (2). In two dimensions a larger m is in order, e.g. m ¼ 2000–10000 for a 2D Hubbard model

(1). Although in that case performance and memory requirements easily exceed the resources of standard

PCs, they are still far below those needed for an ED approach, and valuable results can often be obtained

on off-the-shelf hardware instead of teraflop-class supercomputers (see Section 4).

It must be stressed that many complications show up in implementing the algorithm for a real-world

problem. Fermionic and bosonic commutation rules, reflection and other symmetries, boundary conditions,

degeneracies etc. all require special attention [4,2]. Here we wish to concentrate on the performance and
parallelization aspects alone.

Diagonalization of the superblock Hamiltonian is the most time-consuming part of the algorithm and is

usually done by a Lanczos or Davidson procedure. Thus repeated multiplications of H with superblock

vectors w have to be performed. This is not done by constructing H explicitly as a matrix, but by using the

fact that a Hamiltonian that describes the concatenation of two blocks can be written as

Hij;i0j0 ¼
X
a

Aa
ii0B

a
jj0 ; ð5Þ

where A and B are operators in the two blocks and a counts different terms in the Hamiltonian. Due to the

fact that H ‘‘lives’’ in two blocks and thus has double indices, the MVM is actually of the matrix–matrix

type at the lowest level:X
i0j0

Hij;i0j0wi0j0 ¼
X
a

X
i0

Aa
ii0

X
j0

Ba
jj0wi0j0 : ð6Þ
Fig. 2. One step of the finite system DMRG algorithm (left-to-right phase). �Hlþ1 and �HR
l0�1 are system block and environment block

Hamiltonians in the reduced density matrix eigenbasis.



G. Hager et al. / Journal of Computational Physics 194 (2004) 795–808 799
Dense matrix–matrix multiplication can be optimized using standard unrolling and blocking techniques

[11] so that peak performance is theoretically achievable on modern cache-based RISC architectures. This is

not quite true for very small matrices, where loop overhead and pipeline fill-up effects come into play, but
the MVM part of DMRG is nevertheless well suited for RISC machines.

A slight complication arises because it is quite unfavourable with respect to performance and memory

requirements to use dense matrices throughout. Many operators only have non-zero matrix elements be-

tween states with specific quantum numbers (or quantum number differences), so that it is sufficient to store

the non-zero blocks. Those blocks are labeled by indices RðkÞ on the RHS and are, by virtue of the MVM,

mapped to blocks with indices LðkÞ on the LHS. Consequently, there is an additional sum over quantum

numbers in (6). Omitting the ‘‘normal’’ matrix indices, (6) becomes

Hw ¼
X
a

X
k

Hwð ÞaLðkÞ ¼
X
a

X
k

Aa
kwRðkÞ BT

� �a
k
: ð7Þ

In the software package developed by White and Jeckelmann, the structure of MVM in the Davidson

algorithm is exactly as shown above, featuring two nested loops that handle Hamiltonian terms and

quantum numbers separately.

Every shared-memory parallelization attempt must identify loops in the algorithm that lend themselves

to parallel execution. In (7) three such loops are visible: the innermost matrix–matrix multiplication (twice),

the sum over quantum numbers and the sum over terms in the Hamiltonian.
3. Parallelization of the superblock diagonalization

As shown in the previous section, the performance of (non-dynamical) DMRG calculations is governed

by the superblock diagonalization algorithm, in which a sparse MVM plays the dominant role. Fortunately

the basic operation in this sparse MVM is dense matrix–matrix multiplication, which is well optimized in

the form of BLAS DGEMM on most architectures. Single-CPU performance of DMRG calculations can

potentially achieve a significant fraction of peak speed.

SMP parallelization can be performed in a variety of ways, two of which are targeted here: DGEMM
threading and OpenMP in the sparse MVM procedure.

3.1. Shared-memory DGEMM parallelization

This approach is the simplest one possible due to the fact that no additional programming effort is

necessary. Parallel BLAS libraries exist for virtually all contemporary SMP architectures, thus relinking

with another library is all that is required. All parallelization complexities are hidden inside vendor-pro-

vided DGEMM code.
Unfortunately, the DMRG method has an important drawback – the matrices which form the operands

for DGEMM calls are often quite small, leading to non-negligible parallelization overhead (load imbal-

ance, barrier wait, thread wakeup). This fact makes the DGEMM approach unsuitable for a large class of

problems. See Section 4 for performance results.

3.2. OpenMP parallelization of MVM

One of the basic rules of OpenMP parallelization is to try to find loops that are as far as possible at the
outside of a loop nest and identify their parallelism. The sparse MVM at the core of the Davidson diag-

onalization routine is a viable target for this approach.
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In a first attempt one would simply use an omp parallel for directive at the outer loop of (7). This,

however, yields unsatisfactory performance because the outer loop goes over the terms in the Hamiltonian,

and although the number of terms can easily become a couple of hundreds (especially when using a large
number of sites), load imbalance will readily show up. Moreover the number of terms can become very

small in the course of the calculation when the system block comprises a couple of sites only.

The inner loop over the quantum numbers suffers essentially from the same deficiencies when it comes to

parallelization. In order to get proper scaling, the loop nest has to be eliminated, leading to a single loop.

This is the original code of the loop nest: 1
// W is wave vector, R ist result

for(i¼0; i < number_of_hamiltonian_terms; i++)
{

term ¼ hamiltonian_terms[i];

for(q¼0; q < term.number_of_blocks; q++)

{
li ¼ term[q].left_index;

ri ¼ term[q].right_index;

temp_matrix ¼ term[q].B.transpose() * W[ri];

R[li] +¼ term[q].A * temp_matrix;

}

}

The outer loop is for the Hamiltonian terms whereas the inner loop counts quantum numbers. The

StateSet indices li and ri identify blocks with certain quantum numbers in the wave vectors. There are

some peculiarities one must take care of:

• Every loop iteration writes to some part of the result vector, identified by li. Parallelization must ac-

count for the possibility that any two iterations might have the same value for li.

• The trip count for the inner loop is not a constant but depends on the term.
So when replacing the loop nest by a single loop, one has to take some measures with respect to

bookkeeping. First, a prologue loop must prepare an array that stores references to all blocks required:
for (ics¼0,i¼0; i < number_of_hamiltonian_terms; i++)
{

term ¼ hamiltonian_terms[i];

for(q¼0; q < term.number_of_blocks; q++)

{

block_array[ics] ¼ &term[q];

ics++;
}

}

icsmax ¼ ics;
Second, an array of OpenMP locks has to be set up (once) that later protect from race conditions when

updating the result vector. This array could potentially be established using a C++ vector class (dynamic

resizeability), but experience shows that most compilers have severe difficulties in parallelizing OpenMP

loops that handle complicated C++ objects. Thus the necessary arrays were declared as having a fixed

length, and appropriate checking mechanisms (not shown here) prevent boundary violation:
1 The pseudocode snippets in this section are simplified excerpts that serve to illustrate the coding strategy. They do not constitute

runnable code.
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static int flag¼0;

if(!flag)
{

flag¼1;

for(i¼0; i < MAX_NUMBER_OF_THREADS; i++)

mm[i] ¼ new Matrix; // temp.matrix

for(i¼0; i < MAX_NUMBER_OF LOCKS; i++)

{

locks[i] ¼ new omp_lock_t;

omp_init_lock(locks[i]);

}

}

Now the loop nest can be transformed into a single parallel loop. The required temporary matrix for

each thread is provided inside the parallel region but before the loop actually starts:
#pragma omp parallel private(mytmat,li,ri,myid,ics)
{

myid ¼ omp_get_thread_num();

mytmat ¼ mm[myid]; // temporary matrix, thread-local
#pragma omp for
for(ics¼0; ics < icsmax; ics++)

{

li ¼ block_array[ics]->left_index; // StateSet indices

ri ¼ block_array[ics]->right_index;

mytmat ¼ block_array[ics]->B.transpose() * W[ri];

omp_set_lock(locks[li]);

R[li] +¼ block_array[ics]->A * mytmat;

omp_unset_lock(locks[li]);

}

Only the second matrix–matrix multiplication has to be protected via OpenMP locks, as it writes to

block number li of the result vector. The first one stores its result in a thread-local temporary matrix.

In our default benchmark case (see following section), sparse MVM takes about 85% of total computing
time in the serial case. We therefore expect parallel speedups of up to 6 or 7, not taking into account mutual

locking overhead, thread startup and the like.
4. Performance results on contemporary SMP systems

Two benchmark cases have been investigated in order to show the performance of the different par-

allelization strategies:
(1) The �default� benchmark case used here, unless otherwise noted, is a calculation of ground state prop-

erties for the Hubbard model (1) in two dimensions with 4� 4 sites and periodic BCs at half-filling with

U ¼ 4 and isotropic delocalization tx;y ¼ 1. Although we stick to m ¼ 2000 for practical reasons, the

number of density matrix states kept, m, must be larger (m � 7000) to obtain a good approximation

of the ground state wavefunction, in particular, to preserve translational invariance.

(2) The second benchmark, an 8-site 1D Holstein–Hubbard system (2) at half-filling with U ¼ 3, t ¼ 1,

x0 ¼ 1, g2 ¼ 2 and periodic BCs, has been chosen to show the deficiencies of the parallelization approach.
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We represent each boson site with six pseudosites [4] corresponding to a maximum of 64 phonons per bo-

son site. Thus, the effective number of DMRG sites is 56. To achieve convergencem ¼ 900 has to be used.

Although this study deals mainly with scalability, we nevertheless specify one-CPU performance num-

bers for all systems under investigation in order to set the scale (Table 1). Although it is clear that per-
formance is always dominated by the Davidson diagonalization, the quality of the C++ compiler and the

DGEMM implementation have some influence, the latter especially due to the abundance of small and non-

square matrices. Because of a sophisticated, object-oriented data housekeeping structure in the code, proper

inlining and optimization is essential as well. A comparison with peak performance for every system (last

column in Table 1) shows deficiencies in those respects quite prominently.

For parallel performance studies there are essentially two metrics that can be considered: Speedup SðNÞ
and parallel efficiency eðNÞ. If PðNÞ is the performance of the benchmark on N processors, then

SðNÞ ¼ P ðNÞ
P ð1Þ and eðNÞ ¼ SðNÞ

N
: ð8Þ

In the following we will present data for one or the other metric as appropriate.
An important limitation on parallel efficiency and speedup is imposed by a theoretical limit called Am-

dahl’s Law. In a simple model one can split a single-threaded application into a serial (non-parallelizable)

fraction s and a perfectly parallelizable fraction p ¼ 1� s. The speedup with N CPUs is then calculated as

SAðNÞ ¼ sþ p
sþ p

N

¼ 1

sþ 1�s
N

ð9Þ

with

lim
N!1

SAðNÞ ¼ 1

s
: ð10Þ

In our case the serial fraction is strongly influenced by the quality of the C++ compiler, which has thus a

large impact on scalability. As already mentioned in Section 3.2, the typical fraction of 85% of the total

computing time for the sparse MVM (leading to p ¼ 0:85 in the Amdahl model) leads to the expectation

that speedups between 6 and 7 are achievable when parallelization overhead is negligible.

4.1. Parallel DGEMM

Using parallel DGEMM is as easy as relinking with the appropriate library on all systems, and is

available everywhere. Parallel efficiency was measured on a variety of architectures (see Fig. 3). As can be

seen from the parallel efficiency data, this is actually a very poor method for parallelization. Scalability

depends heavily on the quality of the implementation of parallel DGEMM, as well as more obscure fea-

tures like hardware barriers and associated loss. Compared to other systems, the SGI Origin still does quite

well, which can at least partly be attributed to the high-quality C++ compiler.
Table 1

One-CPU performance in GFlop/s and efficiency in terms of fraction of peak performance for all systems studied (benchmark case (1))

System Peak perf. [GFlop/s] DMRG perf. [GFlop/s] Fraction of peak

IBM p690/Power4 (1.3GHz) 5.2 2.78 0.53

HP rx5670/Itanium2 (1GHz) 4.0 2.25 0.56

Intel Xeon DP (2.4GHz) 4.8 2.08 0.43

SunFire 3800 (900MHz) 1.8 0.92 0.51

SGI Origin 3400 (500MHz) 1.0 0.78 0.78

Proprietary, vendor-supplied BLAS and LAPACK implementations were used in all cases.
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Fig. 3 also shows the limit where parallelization becomes entirely useless (grey zone), i.e., where N -CPU

performance drops below the 1-CPU case.
4.2. OpenMP parallelization

At the time of writing, the OpenMP variant of the program effectively runs only with SGI and IBM

systems. Sun compilers have deficiencies that either prevent the code from compiling or generate non-
functional programs. Intel (IA32 as well as IA64) compilers, while being able to produce correct parallel

code in their very newest releases, show an unacceptable performance hit when OpenMP is switched on.

Therefore it is up to now advisable to use DGEMM parallelization in this environment.

Fig. 4 shows the results of a scaling run with up to 8 CPUs on an SGI Origin system, where scaling is

broken down to different abstraction levels (MVM, Davidson, whole program). While the ‘‘whole pro-

gram’’ scaling is what the end user is finally interested in, it is quite clear that some significant optimization

potential is still hidden between Davidson diagonalization and sparse MVM. Amdahl scaling for two

different serial fractions (s ¼ 0:02 and 0:16) is also shown. Although the Amdahl performance model is
admittedly too simplistic for this code, it nevertheless gives a rough impression about what has been

achieved. Obviously, the MVM parallelization is very efficient with only a minor serial fraction.

Fig. 5 displays the parallel efficiency of the code on IBM p690 and SGI Origin systems. In contrast to the

DGEMM parallelization case, SGI does not have an advantage here. Although the two systems are

practically on par with respect to scalability, a direct comparison of performance in GFlop/s shows clearly

what the favourable architecture for DMRG today should be (Fig. 6).

As the Davidson procedure itself is very well parallelizable, we expect that some performance boost is

still in reach. Other aspects of the implementation that become more prominent with other physical setups
also bear some optimization potential. An example for this is the Holstein–Hubbard model (benchmark

case (2)) for which the broken-down parallel profiling data is shown in Fig. 7. Here we see that the mediocre

overall speedup is actually caused by the sparse MVM itself. Profiling reveals that a significant amount of

time is spent in acquiring locks for the parts of the result vector. Reordering the loop iterations may help

here and is being investigated.
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5. Application: Peierls-insulator Mott-insulator transition in 1D

In quasi-1D materials there is a strong competition between electron–electron and electron–phonon

interactions, which tend to localize the charge carriers by establishing commensurate spin-density-wave and

charge-density-wave ground states, respectively. At half-filling, in particular, Peierls (PI) or Mott (MI)
insulating phases are favored over the metallic state. A heavily debated issue concerns the nature of the

quantum phase transitions between the different insulating phases (for more details see [12] and references

therein). The Holstein–Hubbard model is perhaps the most simple model to address this problem because it

shows a PI–MI transition with increasing U above a threshold electron–phonon coupling (a critical elec-
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tron–phonon coupling is required in order to establish the PI state at non-zero phonon frequency). For

finite periodic chains it has been verified that the transition results from a ground state level crossing with a

change in the ground state site-parity eigenvalue. As can be seen from Fig. 8, the staggered charge- and

spin-structure factors,

ScðpÞ ¼
1

N 2

X
i;j
rr0

ð�1Þji�jj nir

��
� 1

2

�
njr0

�
� 1

2

��
; ð11Þ
SsðpÞ ¼
1

N 2

X
i;j

ð�1Þji�jjhSz
i S

z
ji; Sz

i ¼
1

2
ðni" � ni#Þ ð12Þ
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Fig. 8. Spin and charge structure factors at q ¼ p in the half-filled 1D 8-site HHM (2) with periodic BCs for different U at t ¼ 1, x0 ¼ 1

and g2 ¼ 2. Squares denote ED results, diamonds show DMRG calculations with m ¼ 600 and six pseudosites.
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are strongly suppressed approaching the quantum critical point from below and above, respectively.

However, both ScðpÞ and SsðpÞ remain finite at the transition point for the small 8-site system we were able

to study by means of ED techniques in previous work. Fig. 8 shows that good agreement between ED and

DMRG is achievable for this case. Using the parallelized DMRG code for the Holstein–Hubbard model we

are now in the position to calculate spin and charge structure factors for a sequence of systems with up to

128 lattice sites. The results presented in Fig. 9 can be used to perform a reliable finite-size extrapolation: At
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Fig. 9. Finite-size scaling study of spin and charge structure factors at q ¼ p in the half-filled 1D HHM (2) with periodic BCs at U ¼ 4,

t ¼ 1, x0 ¼ 1 and g2 ¼ 2 with five boson pseudosites, m ¼ 1000 and lattice sizes of up to 128 (m ¼ 800 at N ¼ 128 for practical reasons

with no qualitative loss). For reference, available ED calculations are shown as well.



Table 2

Comparison of computational resources for the calculation of spin and charge structure factors in the Holstein–Hubbard Model

Method # of CPUs Walltime (h) Memory (GB)

ED (8 sites, matrix dim. �1010) 1024 (Hitachi SR8000) �12 600

DMRG (8 sites, m ¼ 600) 1 (SGI Origin) �18 2

DMRG (24 sites, m ¼ 1000) 4 (SGI Origin) �72 10
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the quantum critical point ScðpÞ and SsðpÞ vanish in the thermodynamic limit N ! 1. Simultaneously the
optical excitation gap closes.

A comparison of the required resources for this problem shows already in the 8-site case quite clearly the

superior capabilities of the DMRG method for this kind of problem (Table 2). For the 128-site lattice

(leftmost data point in Fig. 9) with five pseudosites (32 phonons per boson site), the overall number of sites

is 768. Such a system would be absolutely unmanageable with ED methods.
6. Conclusions and outlook

We have presented two methods for parallelization of a DMRG code on shared-memory systems:

parallel DGEMM and OpenMP parallelization on the Davidson MVM level. The deficiencies of parallel

DGEMM are quite clear, but it is still the only alternative when one has to stick to compilers that do not

support OpenMP directives (correctly or efficiently). OpenMP does much better, and there is some sig-

nificant parallelization potential still hidden in the code outside the MVM routine that must be exploited.

We expect that the parallel code will scale well up to sixteen CPUs without any changes in the DMRG

algorithm. A radically different parallelization approach or a new DMRG algorithm would be necessary to
obtain reasonable scalability on hundreds of processors in massively parallel computers. However, the

current SMP implementation already allows us to investigate much larger systems than with ED or with

sequential DMRG.
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